Авторизация

Нейтринный детектор Супер Камиоканде

Как утверждают люди, хорошо знающие Японию и японцев, они очень любят все, что существует в этом мире с приставкой «супер». И сами стараются производить продукцию, к которой эта приставка подходит очень хорошо. И надо признать, что у них хорошо получается производить подобную продукцию. Но что же такое супер-Камиоканде? Судя по названию, это не супер игра, это огромная обсерватория, находящаяся под землей. И, кстати, многие в Японии называют ее просто, как старого друга – супер-К. Выполнена эта подземная обсерватория в форме цилиндра, диаметр которого 39 метров, а высота – 41 метр. Для чего же она предназначена? В ней исследуют элементарные частицы, которые не имеют заряда и практически не имеют массы. Это нейтрино.

SuperKamiokande (или Super-K) — нейтринный детектор, являющийся модернизированной моделью Kamiokande-II. Он размещен в японской лаборатории на глубине в 1000 метров в цинковой шахте Камиока, в 180 милях к северу от Токио. Строительство детектора производилось консорциумом американских и японских исследователей, и было завершено в 1996 году.

Детектор SuperKamiokande представляет собой резервуар из нержавеющей стали высотой 42 м и диаметром 40 м, заполненный 50 тыс. тоннами специально очищенной воды. На стенах резервуара размещены 11146 фотоумножителей (ФЭУ). Также детектор оснащен огромным количеством электроники, компьютеров, калибровочных устройств и оборудованием для очистки воды. Это чрезвычайно светочувствительные приборы: при попадании на их поверхность даже одного кванта света они генерируют электрический импульс, который затем обрабатывает специальная электронная система.

Открытие нейтрино было связано с уверенностью исследователей в справедливости фундаментальных законов физики — законов сохранения. В самом начале XX века при изучении бета-распада радиоактивных ядер физики, как скурпулезные бухгалтеры, старались свести баланс энергии. Но он никак не сходился: часть энергии исчезала неведомо куда. Таким образом, под угрозой оказался один из фундаментальных законов физики — закон сохранения энергии.

 -

 -

Спас положение швейцарский физик Вольфганг Паули, в 1930 году высказавший предположение, что при бета-распаде вместе с электроном рождается какая-то частица — невидимка, которая и уносит недостающую часть энергии. Незамеченной эта частица остается потому, что не имеет массы покоя и электрического заряда и не способна отрывать электроны от атома или расщеплять ядра, иными словами, не может производить те эффекты, по которым лбычно судят о появлении частицы. К тому же она очень слабо взаимодействует с веществом, а потому может пройти через большую толщу вещества, не обнаруживая себя.
В те годы, когда ученым были известны только электрон, протон и фотон, для подобного предположения была нужна большая научная смелость. После открытия в 1932-м тяжелой нейтральной частицы — нейтрона — итальянский физик Энрико Ферми предположил называть частицу, охарактеризованную Паули, «нейтрино», что буквально означает «нейтрончик». Наблюдение реакций, связанных с нейтрино, стало возможным только после создания ядерных реакторов. Физики-ядерщики многих стран пытались экспериментально подтвердить существование теоретически «вычисленной» частицы. Ведь для окончательного доказательства существования нейтрино нyжно было увидеть его непосредственное воздействие на вещество.

 -

 -

 -

 -

 -

К 2000-му году было теоретически обосновано и экспериментально подтверждено существование трех типов нейтрино: электронного, мюонного и тау-нейтрино. Однако это отнюдь не означает завершения исследований в области изучения физики этих частиц. Ученым не терпится узнать, обладает ли нейтрино массой, поскольку результат этих исследований может серьезно поколебать стройную структуру Стандартной модели материи.

 -

 -

 -

 -

Ноябрь 2001 года  принес печальное известие для мировой физики: в Японии вышел из строя один из крупнейших в мире нейтринных детекторов Super-Kamiokande .

Гигантская конструкция, находящаяся на дне шахты километровой глубины, представляет собой цистерну, вмещающую 50 тысяч тонн воды. На стенах цистерны размещены 9 тысяч фотоумножителей —- хрупких вакуумных приборов, регистрирующих слабые вспышки света, возникающие при столкновении нейтрино с электронами в водной толще. Инцидент, случившийся 12 ноября, начался со взрыва одного из фотоумножителей —- предположительно из-за слишком большого давления воды на прибор. Вызванная взрывом ударная волна привела к возникновению цепной реакции и разрушению семи тысяч умножителей.

По словам ученых, на восстановление комплекса потребуется как минимум год и около 30 млн. долларов —- каждый из взорвавшихся приборов стоит почти 3 тысячи. Впрочем, запустить детектор планируется как можно раньше —- возможно, уже после восстановления его наполовину. Известность Super-Kamiokande принес эксперимент 1998 года, в ходе которого были обнаружены признаки наличия массы у нейтрино. Над подтверждением этих результатов и работали в последнее время исследователи из обсерватории Камиока, которой принадлежит детектор. —- Е.З.

 -

Вот видео:

 -

 -

 -

На сегодняшний момент большинство наших знаний о Вселенной получено из наблюдений фотонов. Фотоны обильно вырабатываются, стабильны и электрически нейтральны, их просто обнаружить в широкой области энергий, а их спектры несут детальную информацию о химических и физических свойствах источников. Но горячие плотные области в ядрах звезд, ядра активных галактик и других энергетичных астрофизических источников для фотонов непрозрачны.

 -

 -

Обнаружение космических источников нейтрино может пролить свет на физику экзотических астрономических объектов, таких как экстремально мощные активные ядра галактик или таинственные гамма-вспышки, и помочь сделать шаг вперед в понимании загадки темной материи. Одна из интереснейших и труднейших задач для физиков и астрономов — «поймать» нейтрино внеземного происхождения, и прежде всего измерить поток нейтрино от Солнца, что позволит подтвердить теоретические гипотезы о механизмах реакций, обеспечивающих его светимость.

 -

mw-oct10-boom_0219-2

 -

Для нейтрино солнечного вещества как будто и не существует: они улетают с места возникновения по прямолинейной траектории, нигде и ничем не отклоняясь, многие из них достигают поверхности 3емли. Не имеет значения, день стоит или ночь: днем нейтрино прилетают сверху, а ночью — снизу, свободно пронзая земной шар. К счастью, существуют изотопы, с помощью которых можно устроить для нейтрино хоть и небольшое, но заметное препятствие. Наиболее известным из них является хлор-37. В тех редких случаях, когда нейтрино сталкивается с ядром атома хлора, это ядро испускает электрон и возникает атомное ядро радиоактивного аргона, которое распадается через 35 дней. Используя эту реакцию, можно построить детектор для солнечных нейтрино, который, чтобы компенсировать редкость таких столкновений, должен иметь большие размеры и для защиты от фонового излучения находиться глубоко под землей.

 -

mw-oct10-boom_0277-3

 -

 -

 -

 -

Решение проблемы дефицита солнечных нейтрино, и в частности исследование нейтринных осцилляций, также требует независимых измерений потока электронных нейтрино и мюонных и тау-нейтрино. В 1998 году участники эксперимента «Суперкамиоканде» заявили о регистрации явлений, похожих на нейтринные осцилляции. Обнаружение осцилляций нейтрино стало свидетельством наличия у нейтрино массы покоя. А потому последующие нейтринные эксперименты ставили своей основной целью поиск осцилляций нейтрино. Такие преобразования стали свидетельствовать о наличии у нейтрино массы покоя. Оказалось, что все нейтрино Вселенной весят примерно столько же, сколько все видимые звезды.

 -

 -

Вот тут вы можете прочитать ближе к научному тексту про нейтринный детектор.

 -

А вот тут можете виртуально прогуляться по детектору !

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

Из научных новостей могу напомнить вам как российские Ученые обнаружили в озере Восток неизвестный класс организмов или  может быть кого то интересует Движение магнитных полюсов Земли

Оставить комментарий
иконка
Посетители, находящиеся в группе Гость, не могут оставлять комментарии к данной публикации.
  • Сегодня
  • Читаемое
  • Комментируют


Облако тегов
Опрос
Календарь
«    Ноябрь 2024    »
ПнВтСрЧтПтСбВс
 123
45678910
11121314151617
18192021222324
252627282930