Авторизация

Автомобиль, который «убьет» нефть



Сегодня весь день в реале и интернете в автомобильной тематике. Утром "переобулся", а потом понеслось ...

Про Маска уже кто только не говорил и что только не говорили и даже батарею ТЕСЛЫ разбирали до винтика. А вот про эту машинку я только что узнал.

До поры до времени притворяясь простым автопроизводителем, компания из Лихтенштейна nanoFlowcell изобрела новую экологически чистую «нефть».

Нунцио ла Веккия, технический директор и визионер лихтенштейнской компании nanoFlowcell, — мастер делать столь громкие заявления, что от них волосы на голове становятся дыбом. Оцените мощь посыла: «Наша методика целенаправленных исследований позволила нам прорваться сквозь барьеры, установленные квантовой химией». Или чуть точнее: «Физические и химические границы, установленные уравнением Нернста (лауреат Нобелевской премии по химии, связавший термодинамику с электрохимией), были отодвинуты нами настолько далеко, что мы не могли поверить глазам».

Однако не спешите снисходительно улыбаться. Сначала оцените характеристики первого концептуального автомобиля Веккии, nanoFlowcell Quant e-Sportlimousine. Четыре электродвигателя выдают 925 л.с. пиковой мощности и развивают чудовищный крутящий момент 2900 Н•м — это тяга, которую невозможно реализовать даже теоретически, поэтому электронике приходится непрерывно умерять бешеный пыл моторов. Четырехместный спорткар длиной 5257 мм выстреливает до сотни за 2,8 с и разгоняется до 380 км/ч.

И этот монстр уже получил от властей разрешение беспрепятственно колесить по дорогам Европы.





И главное: пробег Quant e на одной зарядке (или заправке!) достигает 600 км, а чуть более близкий к жизни и к серии компактный спорткар nanoFlowcell Quantino, согласно обещаниям, будет проезжать до 1000 км без кормежки.

На самом деле автомобили, каких свет еще не видывал, — вовсе не главное детище фирмы. Они служат лишь первыми демонстраторами технологии потоковых батарей nanoFlowcell, с помощью которых компания обещает перевернуть представления об энергетике в исторических масштабах.


Два слова о химии

Технология потоковых батарей уходит корнями в космическую отрасль: впервые подобный источник энергии был запатентован NASA в 1976 году и предназначался для обеспечения энергией космических аппаратов. Он сочетает в себе конструктивные принципы и преимущества традиционных аккумуляторов, топливных ячеек и даже двигателей внутреннего сгорания.

Потоковые батареи можно как перезаряжать, так и мгновенно заправлять новым электролитом, словно бензином. Они не имеют эффекта памяти и не уменьшают емкости с годами. В теории у них нет технологического предела по емкости (зависит от объема «топливных» баков) и мощности (зависит от размеров реактора). Проблема лишь в том, что до недавнего времени они были крайне неэффективны с точки зрения сочетания всех этих параметров, то есть давали небольшое напряжение и мощность при слишком больших размерах. Специалисты nanoFlowcell утверждают, что им удалось упаковать в литр электроактивной жидкости небывалое количество энергии с помощью нанотехнологий. Состав «топлива», технология его производства и конструкция энергетической ячейки, разумеется, держатся в строжайшем секрете.

Чтобы разобраться, как работают современные потоковые батареи, стоит освежить в памяти принцип действия более простых источников энергии. Напомним, что в самом простом гальваническом элементе, например пальчиковой батарейке, анод (отрицательный электрод) и катод (положительный электрод) разделены электролитом — раствором, проводящим электрический ток за счет подвижности содержащихся в нем ионов. На поверхности анода протекает реакция окисления, в ходе которой высвобождаются положительные ионы и свободные электроны. На поверхности катода идет реакция восстановления, протекающая с поглощением свободных электронов и положительных ионов. При этом положительные ионы движутся от анода к катоду через электролит, а отрицательные — через нагрузку: электромотор, лампу или иную электрическую схему.


211/ , EUROPA; SCHWEIZ, GENF, Datum: 04.03.2014 12:00:00: 84 INTERNATIONALER AUTO SALON in Genf 2014 84e Salon International de l39;Auto et accessoires, PALEXPO - Stefan Baldauf / SB-Medien


В самых простых угольных батарейках цинковый стакан, который служит анодом, постепенно растворяется, отдавая ионы и электроны. В перезаряжаемых аккумуляторах процессы окисления и восстановления обратимы. К примеру, в литий-ионных элементах положительно заряженные ионы лития переходят от катода к аноду при зарядке и от анода к катоду при разрядке. Независимо от характеристик, большинство привычных нам батареек и аккумуляторов роднит замкнутая конструкция. В их закрытом корпусе содержатся и электроды, и электролит, и запас электроактивных элементов (поставщиков расходных материалов для реакций), в роли которых, как правило, выступают сами электроды. Это значит, что и мощность, и емкость батареи ограничены размерами ее корпуса.

Этого недостатка лишены потоковые батареи, в которых электролит содержит растворенные электроактивные вещества, хранится в отдельных баках и прокачивается насосами через топливную ячейку. В классической потоковой батарее redox (сокращение от reduction-oxidation, восстановление-окисление) имеется два бака: в одном хранится жидкость для окислительной реакции, в другом — для восстановительной.

Топливная ячейка состоит из двух электродов, разделенных мембраной. Мембрана препятствует смешиванию жидкостей между собой, но не препятствует ионному обмену между электродами. Продукты окислительно-восстановительных реакций удаляются из ячейки вместе с протекающей жидкостью, которая по замкнутому контуру возвращается обратно в бак.

Зарядка и разрядка в потоковой батарее происходят так же, как и в любой другой: во время работы концентрация электроактивных веществ в баках падает, а во время зарядки — растет. Емкость потокового аккумулятора зависит от размеров топливных баков, поэтому потенциал данной конструкции трудно переоценить. Мало того, при необходимости быстро пополнить заряд жидкость можно просто заменить. Это так же просто и удобно, как заправить бензиновый автомобиль.

Однако мощность потоковой батареи по-прежнему определяется размерами электродов в топливной ячейке и интенсивностью происходящих на ней реакций. Именно поэтому до недавнего времени перспективы таких источников питания в промышленности, особенно в автомобильной, были не радужными.



А еще в 2014 году исследователи Мельбурнского королевского технологического института (RMIT) разработали новый концепт аккумулятора, использующего в своей основе энергетический потенциал водорода. Именно данный химический элемент, по мнению учёных, должен выступить в качестве замены лития как главного источника энергии в большинстве современных аккумуляторных устройствах.

Озвученная концепция устранит необходимость в производстве, восстановлении, а главное — хранении газообразного водорода, что на сегодня является самым серьёзным фактором, ограничивающим эффективность и распространение подобных систем. Представленное решение сочетает в себе лучшие наработки в области водородных топливных элементов в совокупности с традиционными принципами аккумулирования электрической энергии.

«Так как для процедуры зарядки батареи достаточно лишь притока воды для её дальнейшего расщепления и использования ядер атомов водорода — протонов, а в режиме разряда — воздух, то мы назвали наше изобретение «протонно-потоковая батарея». Кроме перспективных технических решений, заложенных в изобретение, наш аккумулятор имеет внушительный потенциал и в экономическом плане. Производство лития для современных батарей — это достаточно трудоёмкий процесс, а само сырьё — относительно дефицитное, если проводить аналогию с водородом», — пояснил в своём докладе руководитель исследования из RMIT профессор Джон Эндрюс (John Andrews).




Продемонстрированный концепт базируется на интеграции металлогидридного электрода в протонообменную мембрану топливного элемента — Proton Exchange Membrane (PEM). Во время зарядки протоны, полученные при расщеплении воды, непосредственно «связываются» с электронами и металлическими частицами на электроде топливного элемента, который интегрируется в PEМ. Вследствие этого образуется твердотельный водородный металлогидрид. Именно он и выступает в качестве «хранилища» электрической энергии. При использовании же электрического ресурса подобной протонной батареи описанные процессы идут в обратной последовательности.

Опубликованные в Международном журнале водородной энергетики исследования показали, что энергоэффективность протонно-потоковых батарей может достигать аналогичных показателей в сравнении с классическими литий-ионными аккумуляторами, однако первые способны хранить значительно больше энергии на единицу массы и объёма.

«Водород сочетает в себе громадный потенциал в качестве экологически чистого источника питания. Это выставляет его в выгодном свете и подталкивает современную науку к применению элемента в достаточно широком диапазоне областей", — резюмировал господин Эндрюс.

Но вернемся к нашему конкретному автомобилю.


nanoFlowcell Quant F

Нанореволюция

Что стоит за витиеватыми высказываниями Нунцио ла Веккии о нанотехнологиях и квантовой химии? Очевидный путь к повышению мощности топливной ячейки — увеличение площади поверхности электрода: ведь именно на ней протекает химическая реакция и вырабатываются заветные электроны. Самый простой путь — экспериментировать с геометрической формой электродов: сворачивать их в спираль, гофрировать, придавать им самые причудливые формы, чтобы увеличить площадь поверхности, не выходя за приемлемые габариты ячейки. И конечно же, любой производитель батарей уже выжал весь потенциал геометрии досуха.

В своей цюрихской лаборатории специалисты nanoFlowcell экспериментировали не с конструкцией ячейки и не с химическим составом электродов. Объектом их изысканий была так называемая жидкость. Помимо электроактивных веществ она содержит кристаллические наночастицы, способные формировать в непосредственной близости от электродов пространственные структуры. В результате заряд формируется не только на поверхности электродов, но и в пространстве вокруг них, в самой жидкости. Пространство, в котором происходит реакция, оказывается многократно больше обычного.





При выходном напряжении 600 В и токе в 50 А аккумуляторная установка nanoFlowcell выдает 30 кВт мощности. При сопоставимой массе ее емкость в пять раз превышает емкость литий-ионных батарей. Один литр «ионной жидкости» вмещает 11400Вт•ч, что в 400 раз больше, чем в обычном свинцовом автомобильном аккумуляторе. Приятные бонусы — практически полное отсутствие склонности к саморазряду и гарантированный ресурс в 10000 зарядных циклов.

Однако в обычную машину такую батарею не поставишь. Автомобили Quant E, Quant F и Quantino пришлось проектировать буквально вокруг аккумуляторной установки. Судите сами: объем топливных баков Quant E — 200 л каждый. 400 л ионной жидкости нужно разместить без ущерба для комфорта и управляемости.

Потоковая батарея неустанно вырабатывает электроэнергию, которая запасается в емких суперконденсаторах. Эти устройства способны отдавать энергию очень быстро большими порциями, именно они обеспечивают столь внушительную пиковую мощность и динамические характеристики автомобиля. В них же запасается энергия торможения машины.

Когда заряд батареи подходит к концу, владелец авто направляется вовсе не к ближайшей розетке, а на заправку. Компания разработала специальный заправочный терминал высокого давления с двойными шлангами и пистолетами, который позволяет быстро заполнить баки новым комплектом ионных жидкостей.






Мировое господство

Очевидно, что конечная цель nanoFlowcell — вовсе не скромное место под солнцем на тесном конкурентном рынке автопроизводителей. Скорее, это мировое господство. Сайт компании рисует нам радужные перспективы: на волшебном двухкомпонентном топливе будут работать легковушки и грузовики, корабли и самолеты, поезда и даже домашние электроприборы. Складывается впечатление, что лихтенштейнцы нашли единственную в мире скважину с патентованной нефтью принципиально нового качества.

Пожалуй, стоит пожелать им удачи: специалисты компании заверяют, что технология производства и топливных ячеек, и самой ионной жидкости чрезвычайно дружелюбна к окружающей среде, к тому же в ней не используются драгоценные и редкоземельные металлы. Нам же, простым смертным, она обещает быстрые, удобные и экономичные автомобили в самом ближайшем (со слов Нунцио ла Веккии) будущем.


Центр тяжести

Самый массивный элемент конструкции Quant E — топливный бак, две емкости по 200 л каждая. Запас ионных жидкостей хранится максимально низко и близко к центру кузова — в центральном тоннеле.

«Попробуйте догоните нас!» — этой фразой создатели описывают электромобиль Quant F (наследник Quant E), намекая, что его скорость — всего лишь метафора, характеризующая стремительность научных разработок специалистов nanoFlowcell. Разработки эти развивают максималку свыше 300 км/ч и разгоняются до 100 км/ч за 2,8 с при запасе хода до 800 км. Помимо невиданных динамических характеристик автомобиль может похвастаться сенсорными органами управления, спрятанными под деревянной отделкой салона, и дисплеем на центральной консоли шириной 1,25 м. Длина гиперкара — 5257 мм, колесная база — 3198 мм. Интересна и ширина дверного проема — более 2 м.


nanoFlowcell Quantino

Несмотря на невероятные для субкомпактного авто 22-дюймовые колеса, хетчбэк Quantino наиболее близок к серийному производству. По обещаниям nanoFlowcell, он порадует будущих владельцев 1000-км запасом хода и ценой, соответствующей его размерам. Яркая особенность Quantino — низковольтная энергетическая установка с напряжением всего 50 В. Подобные системы требуют слишком большой силы тока, чтобы развить приемлемую мощность, поэтому раньше они устанавливались только на крохотные гольф-кары. Двигатели Quantino развивают достойные 134 л.с., что демонстрирует колоссальный энергетический потенциал nanoFlowcell. Преимущество низковольтной системы — отсутствие риска искрового разряда, чреватого пожаром.

Для движения автомобиля nanoFlowcell используется энергия химических связей в электроактивных жидкостях двух видов. В топливной ячейке она преобразуется в электрическую энергию, которая накапливается в суперконденсаторах. Конденсаторы могут отдавать большие порции энергии за короткое время, они обеспечивают высокую пиковую мощность силовой установки.


Разделяй и властвуй

По принципу действия потоковые батареи практически не отличаются от обычных. Разница состоит лишь в том, что электроактивные вещества в них хранятся в отдельных баках и поставляются к электродам насосами.






источники



В свое время так и не выстрелили обсуждаемые нами Спортивный автомобиль на соленой воде или например Первый автомобиль с ядерным двигателем. А был еще Советский паровой автомобиль и даже Паровой мотоцикл

И посмотрите еще, как раньше могли заменить протектор на шине
  • Нравится
  • 0
теги: Авто
Оставить комментарий
иконка
Посетители, находящиеся в группе Гость, не могут оставлять комментарии к данной публикации.
  • Сегодня
  • Читаемое
  • Комментируют


Облако тегов
Опрос
Календарь
«    Март 2017    »
ПнВтСрЧтПтСбВс
 12345
6789101112
13141516171819
20212223242526
2728293031